147Sm-143Nd systematics of Earth are inconsistent with a superchondritic Sm/Nd ratio.

نویسندگان

  • Shichun Huang
  • Stein B Jacobsen
  • Sujoy Mukhopadhyay
چکیده

The relationship between the compositions of the Earth and chondritic meteorites is at the center of many important debates. A basic assumption in most models for the Earth's composition is that the refractory elements are present in chondritic proportions relative to each other. This assumption is now challenged by recent (142)Nd/(144)Nd ratio studies suggesting that the bulk silicate Earth (BSE) might have an Sm/Nd ratio 6% higher than chondrites (i.e., the BSE is superchondritic). This has led to the proposal that the present-day (143)Nd/(144)Nd ratio of BSE is similar to that of some deep mantle plumes rather than chondrites. Our reexamination of the long-lived (147)Sm-(143)Nd isotope systematics of the depleted mantle and the continental crust shows that the BSE, reconstructed using the depleted mantle and continental crust, has (143)Nd/(144)Nd and Sm/Nd ratios close to chondritic values. The small difference in the ratio of (142)Nd/(144)Nd between ordinary chondrites and the Earth must be due to a process different from mantle-crust differentiation, such as incomplete mixing of distinct nucleosynthetic components in the solar nebula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sm-Nd systematics of Earth are inconsistent with a superchondritic Sm/Nd ratio

The relationship between the compositions of the Earth and chondritic meteorites is at the center of many important debates. A basic assumption in most models for the Earth’s composition is that the refractory elements are present in chondritic proportions relative to each other. This assumption is now challenged by recent Nd/Nd ratio studies suggesting that the bulk silicate Earth (BSE) might ...

متن کامل

Re-evaluating Nd/Nd in lunar mare basalts with implications for the early evolution and bulk Sm/Nd of the Moon

The Moon likely accreted from melt and vapor ejected during a cataclysmic collision between Proto-Earth and a Marssized impactor very early in solar system history. The identical W, O, K, and Cr isotope compositions between materials from the Earth and Moon require that the material from the two bodies were well-homogenized during the collision process. As such, the ancient isotopic signatures ...

متن کامل

Putting quantum gases under the microscope

www.physicstoday.org formation. Indeed, all of Boyet and Carlson’s terrestrial samples had the same 142Nd/144Nd ratio to within a few parts per million, the resolution of their measurement. But Nd has another radiogenic isotope, 143Nd, the daughter of the much longer-lived 147Sm. Since much of Earth’s original 147Sm is still around, geological processes over the whole of Earth’s history can and...

متن کامل

A new geochemical model for the Earth's mantle inferred from Sm–Nd systematics

New measurements of Nd/Nd in kimberlites, carbonatites, komatiites, ocean island basalts from Pitcairn, and mid-ocean ridge basalts from the Pacific and Indian Oceans show no deviation from the terrestrial Nd standard within an external reproducibility of 8 ppm. Measurements of mafic rocks from Isua Greenland confirm previous discoveries of an excess of between 0 and 17 ppm in the Nd/Nd of thes...

متن کامل

Isotopic constraints on the age and early differentiation of the Earth.

The Earth's age and early differentiation history are re-evaluated using updated isotopic constraints. From the most primitive terrestrial Pb isotopic compositions found at Isua Greenland, and the Pilbara of Western Australia, combined with precise geochronology of these localities, an age 4.49 +/- 0.02 Ga is obtained. This is interpreted as the mean age of core formation as U/Pb is fractionate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 13  شماره 

صفحات  -

تاریخ انتشار 2013